Multiple-Instance Learning with Instance Selection via Dominant Sets
نویسندگان
چکیده
Multiple-instance learning (MIL) deals with learning under ambiguity, in which patterns to be classified are described by bags of instances. There has been a growing interest in the design and use of MIL algorithms as it provides a natural framework to solve a wide variety of pattern recognition problems. In this paper, we address MIL from a view that transforms the problem into a standard supervised learning problem via instance selection. The novelty of the proposed approach comes from its selection strategy to identify the most representative examples in the positive and negative training bags, which is based on an effective pairwise clustering algorithm referred to as dominant sets. Experimental results on both standard benchmark data sets and on multi-class image classification problems show that the proposed approach is not only highly competitive with state-of-the-art MIL algorithms but also very robust to outliers and noise.
منابع مشابه
IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملIRDDS: Instance reduction based on Distance-based decision surface
In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classif...
متن کاملMultiple instance ensemble learning method for high-resolution remote sensing image classification
Multiple Instance Learning Via Embedded Instance Selection (MILES) has shown good performance in dealing with noisy training samples, but its bag prediction rule may introduce new uncertainty into the remote sensing image classification results. In order to overcome this limitation, two popular ensemble learning strategies, Bagging and AdaBoost are integrated with MILES. Two methods are propose...
متن کاملUser Personalized Satisfaction Prediction via Multiple Instance Deep Learning
Community-based question answering(CQA) services have arisen as a popular knowledge sharing pattern for netizens. With abundant interactions among users, individuals are capable of obtaining satisfactory information. However, it is not effective for users to attain answers within minutes. Users have to check the progress over time until the satisfying answers submitted. We address this problem ...
متن کاملInstance Label Prediction by Dirichlet Process Multiple Instance Learning
We propose a generative Bayesian model that predicts instance labels from weak (bag-level) supervision. We solve this problem by simultaneously modeling class distributions by Gaussian mixture models and inferring the class labels of positive bag instances that satisfy the multiple instance constraints. We employ Dirichlet process priors on mixture weights to automate model selection, and effic...
متن کامل